Menu


موتورهای پیشنهادکننده و توصیه‌گر (Recommendation Engines)


اهداف و انتظارات آموزشی متمم در این درس
کد درس: ۵۴۶۰۱
از دوستان عزیز متممی انتظار می‌رود پس از مطالعه این درس:
  • بتوانند مفهوم موتورهای پیشنهادکننده یا موتورهای توصیه‌گر را تعریف کرده و کارکرد آن را شرح دهند.
  • بتوانند چند مورد از موتورهای توصیه‌گر را مثال بزنند و فهرست کنند.
  • بتوانند تشخیص دهند که در حال حاضر یا آینده‌ی کسب و کارشان، چنین مکانیزمی تا چه حد قابل تصور یا قابل استفاده است.
فشار ذهنی هنگام مطالعه
نیاز به مشارکت شما
کسب و کار
زندگی
معرفی موتورهای پیشنهاد یا Recommendation Engines

وقتی می‌خواهید به یک کافی‌شاپ جدید بروید یا آخر هفته را به دیدن یک فیلم بگذرانید، احتمالاً از دوستان نزدیک خود می‌خواهید که چند گزینه به شما پیشنهاد دهند.

وقتی می‌خواهید برای یکی از درس‌های دانشگاه، بیشتر مطالعه کنید و بهتر بیاموزید، از استاد خود می‌خواهید که منابع بیشتر برای مطالعه معرفی کند.

گاهی اوقات هم، اگر مشتری طولانی‌مدت سوپرمارکت محله‌تان باشید، ممکن است فروشنده محصولی را که تا امروز نخریده‌اید به شما پیشنهاد کند.

همه‌ی مثال‌های بالا، نمونه‌هایی از سیستم سنتی و انسانی ارائه‌ی پیشنهاد محسوب می‌شوند.

سیستم های توصیه گر و پیشنهاد دهندهاما امروز، ما بخش قابل توجهی از پیشنهادها را نه از دوستان و اطرافیان خود، بلکه از نرم افزارها و اپلیکیشن‌ها و در یک کلام، الگوریتم‌ها دریافت می‌کنیم.

شرکتی مثل آمازون، بخش مهمی از تکنولوژی خود را بر پیشنهاد محصول متمرکز کرده است.

موتورهای جستجو از جمله گوگل، با توجه به پرسشی که برای آنها مطرح می‌کنیم، می‌کوشند بهترین پیشنهاد لینک را ارائه دهند.

دیجی کالا و بسیاری سایت‌های فروش دیجیتال داخلی، همزمان با معرفی هر محصول، محصولات مرتبط را پیشنهاد می‌دهند.

سایت‌های خبری،‌ زیر هر خبر، چند خبر مرتبط را پیشنهاد می‌دهند.

بخش مهمی از موفقیت یا شکست کسب و کارهای دیجیتال، به استراتژی پیشنهاد دادن آنها و یا به عبارت علمی‌تر، قدرت موتور پیشنهاددهنده‌ی آنها (یا همان Recommendation Engine) مربوط می‌شود.

محدودیت در دسترسی کامل به این درس

دوست عزیز.

درس سیستم‌های توصیه کننده برای کاربران ویژه متمم در نظر گرفته شده است.

با عضویت به عنوان کاربر ویژه‌ی متمم، علاوه بر دسترسی به این درس، به سایر درس‌های مرتبط با سواد دیجیتال هم  دسترسی پیدا می‌کنید که می‌توانند به شما بیشتر کمک کنند.

همچنین با فعال کردن اشتراک ویژه به درس‌های بسیار بیشتری دسترسی پیدا می‌کنید که می‌توانید فهرست آنها را در اینجا ببینید:

 فهرست درس‌های مختص کاربران ویژه متمم

البته از میان درس‌های مطرح شده، ما فکر می‌کنیم با توجه به علاقمندی شما به موضوع دیجیتال، شاید بهتر باشد ابتدا مطالعه‌ی مباحث زیر را در اولویت قرار دهید:

 استراتژی محتوا و بازاریابی محتوا

 شناخت بهتر شبکه های اجتماعی

 دوره MBA متمم (اگر به بحث‌های کلان مدیریتی علاقمندید)

فرض کنید در همان سیستم پیشنهاد فیلم، یک عنوان فیلم مشخص به تازگی عرضه شده و کمتر کسی آن را می‌شناسد و می‌بیند.

پس از مدتی، به خاطر کمتر انتخاب شدن، این فیلم از دایره‌ی توصیه‌ها خارج می‌شود.

به عبارتی، محصولات پرطرفدار به تدریج پرطرفدارتر و محصولات منزوی یا کمتر شناخته شده به تدریج منزوی‌تر می‌شوند.

[ درس مرتبط: سیستم‌هایی که در‌ آنها، موفقیت سهم موفق‌هاست ]

الگوریتم‌های هیبرید می‌کوشند با ترکیب دو روش، نقاط ضعف هر روش را توسط روش دیگر پوشش دهند.

تمرین اول:

حداقل سه سیستم پیشنهاد دهنده را که می‌شناسید مثال بزنید.

اگر چه الزاماً نمی‌توانید به صورت قطعی نظر بدهید، اما در مورد هر کدام بگویید که حدس می‌زنید کدامیک از سه شیوه را مورد استفاده قرار می‌دهند.

تمرین دوم:

آیا موردی هست که جای خالی یک سیستم پیشنهاددهنده‌ی قوی را حس کنید؟ موردی که یا اصلاً چنین سیستمی در آن وجود نداشته باشد یا آنچه هست، انتظار شما را تامین نکند.

 
 

ترتیبی که گروه متمم برای خواندن مطالب سری سواد دیجیتال به شما پیشنهاد میکند:

قوانین کامنت گذاری/ ارسال نظرات غیر مرتبط با این مطلب

26 نکته برای موتورهای پیشنهادکننده و توصیه‌گر (Recommendation Engines)

     
    دوست گرامی مشاهده تمرینهای مربوط به این درس، صرفا برای کاربران متمم امکانپذیر میباشد.
    .