Generic selectors
Exact matches only
Search in title
Search in content
Menu
دوره آموزشی هدف گذاری (کلیک کنید)


موتورهای پیشنهادکننده و سیستم های توصیه گر


اهداف و انتظارات آموزشی متمم در این درس
کد درس: ۵۴۶۰۱
از دوستان عزیز متممی انتظار می‌رود پس از مطالعه این درس:
  • بتوانند مفهوم موتورهای پیشنهادکننده یا سیستم های توصیه گر را تعریف کرده و کارکرد آن را شرح دهند.
  • بتوانند چند مورد از موتورهای توصیه‌گر را مثال بزنند و فهرست کنند.
  • بتوانند تشخیص دهند که در حال حاضر یا آینده‌ی کسب و کارشان، چنین مکانیزمی تا چه حد قابل تصور یا قابل استفاده است.
فشار ذهنی هنگام مطالعه
نیاز به مشارکت شما
کسب و کار
زندگی
معرفی موتورهای پیشنهاد یا Recommendation Engines

وقتی می‌خواهید به یک کافی‌شاپ جدید بروید یا آخر هفته را به دیدن یک فیلم بگذرانید، احتمالاً از دوستان نزدیک خود می‌خواهید که چند گزینه به شما پیشنهاد دهند.

وقتی می‌خواهید برای یکی از درس‌های دانشگاه، بیشتر مطالعه کنید و بهتر بیاموزید، از استاد خود می‌خواهید که منابع بیشتر برای مطالعه معرفی کند.

گاهی اوقات هم، اگر مشتری طولانی‌مدت سوپرمارکت محله‌تان باشید، ممکن است فروشنده محصولی را که تا امروز نخریده‌اید به شما پیشنهاد کند.

همه‌ی مثال‌های بالا، نمونه‌هایی از سیستم سنتی و انسانی ارائه‌ی پیشنهاد محسوب می‌شوند.

سیستم های توصیه گر و پیشنهاد دهندهاما امروز، ما بخش قابل توجهی از پیشنهادها را نه از دوستان و اطرافیان خود، بلکه از نرم افزارها و اپلیکیشن‌ها و در یک کلام، الگوریتم‌ها دریافت می‌کنیم.

شرکتی مثل آمازون، بخش مهمی از تکنولوژی خود را بر پیشنهاد محصول متمرکز کرده است.

موتورهای جستجو از جمله گوگل، با توجه به پرسشی که برای آنها مطرح می‌کنیم، می‌کوشند بهترین پیشنهاد لینک را ارائه دهند.

دیجی کالا و بسیاری سایت‌های فروش دیجیتال داخلی، همزمان با معرفی هر محصول، محصولات مرتبط را پیشنهاد می‌دهند.

سایت‌های خبری،‌ زیر هر خبر، چند خبر مرتبط را پیشنهاد می‌دهند.

بخش مهمی از موفقیت یا شکست کسب و کارهای دیجیتال، به استراتژی پیشنهاد دادن آنها و یا به عبارت علمی‌تر، قدرت موتور پیشنهاددهنده‌ی آنها (یا همان Recommendation Engine) مربوط می‌شود.

محدودیت در دسترسی کامل به درس‌های سواد دیجیتال

دوست عزیز. دسترسی کامل مجموعه درس‌های سواد دیجیتال برای اعضای ویژه‌ی متمم در نظر گرفته شده است.

  تعداد درس‌ها: ۷۶ عدد

  دانشجویان این درس: ۶۸۹۹ نفر

  تمرین‌های ثبت‌شده: ۳۸۷۵ مورد

 البته با عضویت ویژه، به مجموعه درس‌های بسیار بیشتری به شرح زیر دسترسی پیدا می‌کنید:

 فهرست درس‌های متمم

البته اگر به تسلط بر تکنولوژی و سواد دیجیتال علاقه دارید، احتمالاً مطالعه‌ی مباحث زیر برایتان در اولویت خواهد بود:

  آموزش CRMاتوماسیون بازاریابی

  استراتژی محتوا | آموزش بازاریابی محتوا | دیجیتال مارکتینگ

  آموزش سئو | ایمیل مارکتینگ | شبکه های اجتماعی

  شبکه های اجتماعی | تولید محتوا

  دوره MBA (پیگیری منظم مجموعه درس‌ها)

اگر با فضای متمم آشنا نیستید و دوست دارید درباره‌ی متمم بیشتر بدانید، می‌توانید نظرات دوستان متممی را درباره‌ی متمم بخوانید و ببینید متمم برایتان مناسب است یا نه. این افراد کسانی هستند که برای مدت طولانی با متمم همراه بوده و آن را به خوبی می‌شناسند:

فرض کنید در همان سیستم پیشنهاد فیلم، یک عنوان فیلم مشخص به تازگی عرضه شده و کمتر کسی آن را می‌شناسد و می‌بیند.

پس از مدتی، به خاطر کمتر انتخاب شدن، این فیلم از دایره‌ی توصیه‌ها خارج می‌شود.

به عبارتی، محصولات پرطرفدار به تدریج پرطرفدارتر و محصولات منزوی یا کمتر شناخته شده به تدریج منزوی‌تر می‌شوند.

[ درس مرتبط: سیستم‌هایی که در‌ آنها، موفقیت سهم موفق‌هاست ]

الگوریتم‌های هیبرید می‌کوشند با ترکیب دو روش، نقاط ضعف هر روش را توسط روش دیگر پوشش دهند.

تمرین اول

حداقل سه سیستم پیشنهاد دهنده را که می‌شناسید مثال بزنید.

اگر چه الزاماً نمی‌توانید به صورت قطعی نظر بدهید، اما در مورد هر کدام بگویید که حدس می‌زنید کدامیک از سه شیوه را مورد استفاده قرار می‌دهند.

تمرین دوم

آیا موردی هست که جای خالی یک سیستم پیشنهاددهنده‌ی قوی را حس کنید؟ موردی که یا اصلاً چنین سیستمی در آن وجود نداشته باشد یا آنچه هست، انتظار شما را تامین نکند.

بعد از خواندن این درس چه کار کنم؟

  در نگاه اول به نظر می‌رسد دنیایی که در آن سیستم‌های هوشمند توصیه‌گر به کمک ما بیایند، دنیای بهتر و شیرین‌تری است. اما این موتورهای پیشنهاددهنده دردسرهای خاص خودشان را هم دارند. مثلاً پیشنهادهای آن‌ها می‌تواند رفتار کاربران را تغییر دهد و طبیعتاً تحلیل رفتار کاربران – آن هم در شرایطی که خودمان قبلاً آن را دستکاری کرده‌ایم – می‌تواند به نتایج گمراه‌کننده منتهی شود. برای درک بهتر این پدیده پیشنهاد می‌کنیم درس پروژهٔ GFT گوگل را مطالعه کنید.

ترتیبی که متمم برای خواندن مطالب سری پلتفرمها به شما پیشنهاد می‌کند:

سری مطالب حوزه پلتفرمها

سوال‌های پرتکرار دربارهٔ متمم

متمم چیست و چه می‌کند؟

متمم مخففِ عبارت «محل توسعه مهارتهای من» است: یک فضای آموزشی آنلاین برای بحث‌های مهارتی و مدیریتی.

برای کسب اطلاعات بیشتر می‌توانید به صفحهٔ درباره متمم سر بزنید و فایل صوتی معرفی متمم را دانلود کرده و گوش دهید.

فهرست دوره های آموزشی متمم را کجا ببینیم؟

هر یک از دوره های آموزشی متمم یک «نقشه راه»  دارد که مسیر یادگیری آن درس را مشخص می‌‌‌کند. با مراجعه به صفحهٔ نقشه راه یادگیری می‌توانید نقشه راه‌های مختلف را ببینید و با دوره های متنوع متمم آشنا شوید.

هم‌چنین در صفحه‌های دوره MBA و توسعه فردی می‌توانید با دوره های آموزشی متمم بیشتر آشنا شوید.

هزینه ثبت نام در متمم چقدر است؟

شما می‌توانید بدون پرداخت پول در متمم به عنوان کاربر آزاد عضو شوید. اما به حدود نیمی از درسهای متمم دسترسی خواهید داشت. پیشنهاد ما این است که پس از ثبت نام به عنوان کاربر آزاد، با خرید اعتبار به عضو ویژه تبدیل شوید.

اعتبار را می‌توانید به صورت ماهیانه (۱۶۰ هزار تومان)، فصلی (۴۲۰ هزار تومان)، نیم‌سال (۷۵۰ هزار تومان) و یکساله (یک میلیون و ۲۰۰ هزار تومان) بخرید. لطفاً برای اطلاعات بیشتر به صفحه ثبت نام مراجعه کنید.

آیا در متمم فایل های صوتی رایگان هم برای دانلود وجود دارد؟

مجموعه گسترده و متنوعی از فایلهای صوتی رایگان در رادیو متمم ارائه شده که می‌توانید هر یک از آنها را دانلود کرده و گوش دهید.

هم‌چنین دوره های صوتی آموزشی متنوعی هم در متمم وجود دارد که فهرست آن‌ها را می‌توانید در فروشگاه متمم ببینید.

با متمم همراه شوید

آیا می‌دانید که فقط با ثبت ایمیل و تعریف نام کاربری و رمز عبور می‌توانید به جمع متممی‌ها بپیوندید؟

سرفصل‌ها  ثبت‌نام  تجربهٔ متممی‌ها

۹۹ نظر برای موتورهای پیشنهادکننده و سیستم های توصیه گر

     
    تمرین‌ها و نظرات ثبت شده روی این درس صرفاً برای اعضای متمم نمایش داده می‌شود.
    .